	$\mathcal{U}, \widetilde{\underline{X}}, 28$
Goals · Motivate inte	gration
· Sigma (E)	ntation
· Riemann sum	5 · · · · · · · · · · · · · · · · · · ·
E - Sugard - diad	trading of the internet in the
at time t secon	als, What is the change in the objects
position from	t=0 to t=10?
· · · · · · · · · · · · · · · · · · ·	$\int \mathcal{T}_{t} = \mathbf{v}(\mathbf{t})$
	$\sim 5(10) - 5(0) =]$
· · · · · · · · · · · · · · · · · · ·	+t $s(t) = pos'n at fime t (m)$
· · · · · · · · · · · · · · · · · · ·	10 · · · · · · · · · · · · · · · · · · ·

		-e + i + i + i + i + i + i + i + i + i +	
		If v(t) = c is constant, this is simplu :	
		distance = const velocity × time	
		$s_0 = s(10) - s(0) = c \cdot (10 - 0)$	
		More generally,	
		$s(b) - s(a) = c \cdot (b - a)$ for $a \le b$.	
		Geometrically:	
		and a second of the second of a real = height. *. Width a second of a second	
		$\mathbf{v}(\mathbf{t})$	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	

Divide and conquer: Approximate displacement by pratending v(t) is constant on small infer-vals:

And "in the limit" $\gamma = v(t)$ this area equals s(10) - s(0). $\int v(t) dt$ It is also Problems For the following velocity graphs, find the displacement (total change in position) from t= a to t= b (2,2) (5,2) v(t) = sin(t)2 6 (t) 2 5 6-(0

Let's formalize : Defn Fix a < b. A set of points P= {xo, x1,..., xn} with a=xo < x, <x2 < ... < xn=b is called a partition of la,b]. If the subintervals all have the same width, the set of points forms a regular partition of the interval [a, b]. $\Delta x = x_i - x_{i-1}$ $\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$ Defn let f: [a,b] -> IR be a function, P= [x,,x,,...,xn} be a regular partition of [a,b] with subinterval width $\Delta x = x_i - x_{i-1}$ For each i, let x: be some point of [x:-, x]. The Riemann som for f our [a, b] relative to P, {x;} is

 $f(x_i^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x = \sum f(x_i^*)\Delta x_i$ L Sigma notation y = f(x)· × x_c Flavors of Riemann sum a 1 6 Left, right, midpoint, upper, lower. Note The "area" $f(x_i^*) \Delta x$ is negative when $f(x_i^*) < 0$ \longrightarrow "signed area"

Upshit Signed area under curve between a, b is	
$\approx f(x_1^*)\Delta x + f(x_2^*)\Delta x + \cdots + f(x_n^*)\Delta x$ (aspecially for a large $\Rightarrow \Delta x \text{ small}$)	
If $f(t) = v(t)$ is velocity, this is α displacement from a to b.	
Problem Find right Riemann sum for $f(x) = x$ on $[0,1]$ with $n = 1, 2, 3, 4$.	
$\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4}, \frac$	
$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}$	

Sigma notation Sin(mi) E z Greek 5 for Sum. i=3 end Sequence $(a_i)^{\infty} = (a_{1,a_{2,a_{3,a_{4,\dots}}})$ $= \sin(\pi \cdot 3)$ + sin($\pi \cdot 4$) $\sum_{i=1}^{n} a_i := a_i + a_1 + a_3 + \dots + a_n = \sum_{i=1}^{n} a_i$ + sin [11.5] Start E.g. If $a_i = i$, then $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} i = 1+2+3+\dots+n$ is the sum of the first a positive integers n×n square n^{2} total squares $\frac{1}{2}n^{2} + \frac{1}{2}n = \frac{n^{2}+n}{2} = \frac{n(n+1)}{2}$

Thus $\sum_{i=1}^{n} i = \underline{n}($	(n+1)				
$Chick I = \frac{1 \cdot 2}{2}$	· · · · · · · · · · · · · · · · · · ·				
1+2=3=	2.3 Z				
1+2+3=6=	= 3-4 2				
1+2+3+4=10	= <u>4.5</u> 2				
1+2+3+4+5 = 15	$=\frac{5\cdot 6}{2}$				
Lat's return to the	right hand	Riemann	sum for	f(x)= x	
or er (0,1), ;					

 $R_n = \sum f(x_i^*) \Delta x$ n-thright Riemann sum 1 I i [factor out n (n+1) f(x) = x Zn 3 3 1000 2r