Goals . Mean value theorem for integrals . State FTC1 & understand why it's true	24. XI 1
. Use FTC1 to avaluate derivatives of accumulation fun	ctions
Mean value theorem i $f [a,b] \rightarrow \mathbb{R}$ cts on $[a,b]$, diff' Thun there exists c in (a,b) such that f'(c) = f(b) - f(c)	l on (a,b).
Slogan Instantaneous rate of change at some point is equal to avg rate of change.	

Mean value theorem for integrals If f: [a,b] -> IR is continuous, then there exists c in [a,b] such that fare to a $f(c) = \frac{1}{b-\alpha} \int_{a}^{b-\alpha} f(x) dx$ Slogen A continuous function takes its average value at least once. Proof By the actreme value theorem, f attains its min and max values m, M on [a,b] then $m \leq f(x) \leq M$ on [a,b], so $m(b-a) \leq \int f(x) dx \leq M(b-a)$ $m = \int f(x) dx \leq M(b-a)$ $m \leq \frac{1}{b-a} \int_{a}^{b} f(x) dx \leq M$ 7

Sinc	$e = \frac{1}{b-a} \int_{a}^{b} f(x) dx$ is between m, M
	+ f takes the values m, M
the	t f continuous intermediate value theorem implies there is some a for which
· · · · · · · · · · · · · · · · · · ·	$f(c) = \frac{1}{b-a} \int_{a}^{b} f(c) dx$
FT	
	$F(x) := \int_{a}^{x} f(t) dt - \frac{accumulation}{tunction}$ then $F'(x) = f(x)$. F(x) = F(x)

Call F(x) = j f(t) dt an accumulation function. Slogan Accumulation function of f is an antiderivative sf f antiderivative of f is a function F such that F'=f PF We have $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$ $= \lim_{h \to 0} \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right)$ $= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$ $\left[\int_{a}^{b} \frac{1}{2}\int_{a}^{c} \frac{1}{2}\int_{c}^{b} \frac{1}{2}\int_$ avorage of f over (x, x+h].

		By	_ M	VT 4	t∫,	there	(7 FM	ne c	ε [x,	x+h] 5	uch	. H	nat	· · ·				
)= <u>-</u> h	$\int_{x}^{x+h} f($	t) dt										
		As	K-									ر ک ^ی							
						f(c) 0				(×)									
		Thus	7	F'	(x)	= 1im h-10	$\frac{1}{h}\int_{a}^{b}$	x+h f(t) x	dt										
						= lim h-ro	f(c)												
						= f(x)	 	disi	red.	· ·] . 								

E.g. If $g(x) = \int_{1}^{x} \frac{1}{t^{3}+1} dt$, then $g'(x) = \frac{1}{x^{3}+1}$ E.g. If $F(x) = \int_{-\infty}^{\infty} \cos t \, dt$, then we can use the chain rule to compute F'(x). Let $u(x) = x^3$. Then $F(x) = \int u(x) dt$ and $F'(x) = \cos(u(x)) \cdot u'(x)$ $= coj(x^3) \cdot 3x^2$ Problem let $F(x) = \int_{x}^{2x} t^{3} dt$. Find F'(x). $\mathbf{F} = \mathbf{F} \left(\mathbf{x} \right) \mathbf{F}$ X 2x

Answer $F(x) = \int_{0}^{2x} t^{3} dt - \int_{0}^{x} t^{3} dt$ so $F'(x) = 16x^3 - x^3 = 15x^3$ $\int_{0}^{2x} t^{3} dt = g(2x) \text{ for } g(x) = \int_{0}^{x} t^{3} dt$ thus $\frac{d}{dx} \int_{0}^{2x} t^{3} dt = g'(2x) \cdot (2x)'$ = $(2x)^{3} \cdot 2 = 16x^{3}$

Note If $G(x) = \int_{a}^{u(x)} f(t) dt$, then				
$G'(x) = f(u(x)) \cdot u'(x)$				
(via chain rule).				
(1) Informal proof of FTC1 (2) Continuity hypothesis				

F'(x) = , lim F(x+h)height $\approx f(x)$ blue area $h \cdot f(x)$ F(x+h) - F(x) $\mathcal{L}(x)$ What if f has discontinuity? $\lim_{h \to 0} F(x+h) - F(x)$ 50 JE