$ \cdots \cdots$	24	1. Z_1	H	
Goals · First durivative fast				
- Concavity & inflection points				
. Second derivative test				
Recall for 3 of MVI:				
$f > 0$ on $T \Rightarrow f$ increasing on T				
J ACTORS IN F				
f'<0 on I => f decreasing on I				
· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				
	· · ·			
t>0 f <0 dec f >0 but de				
note: f'also increasing still f increasing t	ducru	s-ng		

First derivative test Suppose f cts over interval I containing a critical point c. If f is diff' lover I except possibly at c, then f(c) satisfies one of the following descriptions : (i) if f' changes sign from positive (for xcc) to negative (for x>c), then flc) is a local max (ii) if f' changes sign from negative (for x<c) to positive (for x>c), then fle) is a local min (iii) if f' has the same sign left and right of c, then fle) is not a local extremum. (+ +

E.g. Y=flx) max Incal min a local Problem Draw a graph with the following "signature and laber local extrema via 1st duriv test

E.g. Lut's use the first durivative tast	to find all local extrema
of $f(x) = -x^3 + \frac{3}{2}x^2 + 18x$.	
We have $f'(x) = -3x^2 + 3x + 18$	
$= -\Im\left(\chi^{2} - \chi - \zeta_{0}\right)$	
= -3(x-3)(x+2)	
so the only critical points are	$x = -2$, 3, \dots
f de c finc	f. die 3
f'(-3) = -18 $f'(-3) = -18$	f'(4) = -18
By the 1st deriv test, f(-2) =	is a local min or $f(3) = $ is a local max.

Concavity Defn Let f be a function that is diff'l on an open interval I. If f is increasing, our I, we say f is concave up on I; if f' is decreasing over I, we say f is concare down on I. , · · j· up·=·U $\frac{\mathbf{t}}{\mathbf{r}}$ fine fine for for down fine => cone for de => cone for ine => for de => cone Concavity test but f be twice diffil on an interval I. (i) If f''(x) > O for all x & I, then f is concave up on I. (ii) If f"(x) < 0 for all x E I, then f is concave down on I.

If f is its at a and f changes concavity at a Defn the point (a, f(a)) is an influction point of f inflection point noun 1 : a moment when significant change occurs or may occur : TURNING POINT At 18, Bobby is at an *inflection point* that will largely determine the course of his life. - Stacy Perman ... the gradual move away from big-iron machines toward work Con stations and personal computers has been going on for years in corporate America—but the inflection point came suddenly. - Steve Lohr d A 6h It depends on us, on the choices we make, particularly at certain inflection points in history; particularly when big changes are happening and everything seems up for grabs. - Barack Obama 2 mathematics : a point on a curve that separates an arc concave upward from one concave downward and vice versa < D f"<0

Second derivative test Suppose f'(c) = 0, f'' is continuous over an interval containing c (i) If f"(c)>0, then f has a local min at c (ii) If f"(c) < 0, then f has a local max at c (iii) If f"(c) = 0, than the fast is inconclusive. E.q. If $f(x) = x^{3} - 12x + 5$ flux $f'(x) = 3x^{2} - 12 = 3(x^{2} - 4) = 3(x + 2)(x - 2)$ Thus f'(x) = 0 for $x = \pm 2$. Now f''(x) = 6x and f"(-2) = -12 => x= -2 is a local max $f''(2) = 12 \implies x = 2$ is a local min.

2 - 2 $f(x) = x^{4}$ $f'(x) = 4x^3 = 0$ iff x=0second deriv test $f''(x) = 12x^2 \implies f''(0) = 0$ inconclusive Multivariable k-saddle