· · · · · · · · · · · · · · · · · · ·	24. آیک . 9
Goals Review composition & inverses	
· Chain rula: (f·g)	
. Invarse function theorem: $(f^{-1})'$	
$Composition \rightarrow [g] \rightarrow 0 \rightarrow [f] \rightarrow = \rightarrow [g] \rightarrow [f] \rightarrow$	
i.e. $(f \circ g)(x) = f(g(x))$ (as long as $g(x)$ is in the	domain of f)
For instance, suppose $f(x) = x-1$ and $g(x) = x^2$	
Thun $(f^{*}g)(x) = f(g(x))$ = $f(x^{2})$ $x \rightarrow [g] \rightarrow x^{2} \rightarrow [f]$	$] \longrightarrow \chi^2 - $

 $= \chi^2 - 1$ fog ≠ gof in general. $\times \stackrel{z}{\mapsto} \times \stackrel{1}{\times} \stackrel{1}{\times} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\swarrow} \stackrel{1}{\rightthreetimes} \stackrel{1}{\swarrow} \stackrel{1}{\rightthreetimes} \stackrel{1}{\swarrow} \stackrel{1}{\rightthreetimes} \stackrel{1}{\rightthreetimes} \stackrel{1}{\longleftarrow} \stackrel{1}{\rightthreetimes} \stackrel{1}{\longleftarrow} \stackrel{1}{\rightthreetimes} \stackrel{1}{\longleftarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow}$ With above functions, (gof)(x) = g(f(x)) $z(x) = x^2 + 5$ u(x) ~ 1/x = g(x-1) g = w·Z $= (x-1)^2$ $= x^2 - 2x + 1$ Problem Express the following functions as compositions: $\times \stackrel{k}{\longmapsto} \sin \times \stackrel{\lambda}{\longmapsto} (\sin x)^2$ $f(x) = \sin^2 x = (5in x)^2$ $\frac{l(x) = x^2}{k(x) = \sin x} f = l \cdot k$ $g(x) = \frac{1}{x^2 + 5}$

 $(-\overline{M}-\cdot-\overline{g}-)\cdot-\overline{D}-\cdot\overline{z}-$ -12-12-12 $f \circ (g \circ h) = (f \circ g) \circ h$ I.L. function composition is associative If $f = g \cdot h$, then $f(x) = (g \cdot h)(x) = g(h(x))$

Inverses The function id(x) = x is called the identity function Its job is to do nothing. Defn If fog = id and gof = id, call g the inverse of f and write $g = f^{-1}$. $(f = f^{-1} + f)$ Note · Many functions don't have an inverse · Sometimes you need to restrict the domain of a function to specify an inverse . The inverse is only defined on the image of f. • If f(x) = y, thun $(f^{-1} \cdot f)(x) = f^{-1}(y)$ $\implies \qquad x = f^{-1}(y)$ inverses solve egins!

 $E.g. f(x) = x^2$ $y = f(x) = x^2$ Restrict the domain of f to RZO={xER XZO} fails hor line test $y=\sqrt{x}$ $g(x) = \sqrt{x}$ on $\mathbb{R}_{>0}$. Thun $f(g(x)) = (\sqrt{x})^2 = x$ $g(f(x)) = \sqrt{x^2} = x$ Note Graph of y=f-'(x) is the reflection of y=f(x) over y=x line.

Chain Rule Let fig be functions. Then for all x in the		
domain of g at which (1) g is diff'l, and (2) f is diff'l at	g(x)	, , , , ,
$(f \cdot g)'(x) = f'(g(x)) \cdot g'(x)$. $Y = g(x) \frac{dz}{dx} =$ $z = f(y) \frac{dx}{dx}$	$\frac{dz}{dy}$	$\frac{dy}{dx}$
E.g. Lat's compute the derivative of $h(x)=(2x^3+5x^2-2x+3)^4$.		
Ahe! This $h(x) = f(g(x))$ for $f(x) = x^{4}$, $g(x) = -$		
Thus $h'(x) = f'(g(x)) \cdot g'(x)$		
$= 4 \cdot 3(x)^{3} \cdot (6x^{2} + 10x - 2)$		
$= 4(2x^{3}+5x^{2}-2x+3)^{3}(6x^{2}+10x-2)$		

 $h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a}$ Pf Idea [difn] $= \lim_{x \to \infty} \frac{f(g(x)) - f(g(a))}{f(g(a))}$ [h=fog] a a a a a x-a x-a $= \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a}$ $\begin{bmatrix} mult by \\ 1 = g(x) - g(a) \\ g(x) - zh \end{bmatrix}$ $\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$ Corol rule for limite? = $\lim_{y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)}$ $\left(\gamma = g(x) + \right)$. g'(a) as x-ra, g (c) →g(a) b/c g c+s $= f'(g(a)) \cdot g'(a)$ [defn]

Let's use the chain rule to derive the power rule for negative powers from positive powers:									
			Fix	n>	Ð	and s	et hbe) =	$x^{-n} = \frac{1}{x^n} = f(g(x))$ for $g(x) = x^n$, $f(x) = \frac{1}{x}$.
			hle	kn	<i>w</i> ø	g' (x)	= n × ⁿ⁻	٦ · ·) · .	$f'(x) = \frac{-1}{x^2}$, Thus
							h'(;	د) ءَ ($\frac{-1}{(x^n)^2} \cdot n x^{n-1} \text{[chain rule]}$
								· ·	$\frac{-n}{-n}$
									$\mathbf{X}^{n+1} = \mathbf{X}^{n+1} = X$
								 	-n x -n-1 still the power rule!

Mora generally, $\left(\frac{1}{g(x)}\right)^2 = \frac{-1}{g(x)^2} \cdot g'(x)$ [chain] = -ig'(x) $g(x)^2$ and $\left(\frac{f(x)}{g(x)}\right)' = \left(f(x) \cdot \frac{1}{g(x)}\right)'$ $= f'(x) \cdot \frac{1}{g(x)} + f(x) \cdot \left(\frac{-q'(x)}{g(x)^2}\right)$ $= \frac{f'(x)g(x) - f(x)g'(x)}{f(x)g'(x)}$ the quotient g(x)2