24. 12. 16

Quiz Let x be a real number. Algebraically, evaluate $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$ $= \lim_{h \to 0} \frac{x^2 + 2xh + h^2}{h}$ expand, car iv) $= \lim_{h \to 0} \frac{h(2x+h)}{h}$ lfactor, cancel J $= \lim_{h \to 0} (2x + h) = 2x$ [evaluate at h=0]

Goals · Derivatives as functions · Sketching derivatives · Differentiable => continuous
Recall For $f = function$ defined on an open interval containing $a, f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
Defin The derivative function f' is the function
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
with domain those is for which the limit exists.

<u>E.s.</u>	From the quiz, $f f(x) = x^2$, then
	$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{1}$
	• • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
E.g.	If $f(x) = \sqrt{x}$, then
· · · · · · · · ·	$f'(x) = \lim_{x \to h} \frac{\sqrt{x+h} - \sqrt{x}}{\sqrt{x}}$
	$h \rightarrow 0$
	$= \lim_{h \to \infty} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \sqrt{x}$
	$\frac{1}{2} + \frac{1}{2} + \frac{1}$
	$h \rightarrow 0$ $h(\sqrt{x+h} + \sqrt{x})$

= $\lim_{h \to 0} \frac{k}{k(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$ $\frac{1}{2\sqrt{x}}$ i.e. $(x'^2)' = \frac{1}{2}x^{-1/2}$ Leibnie notation Notation f'(x), $\frac{df}{dx}$, $\frac{d}{dx}(f(x))$, and, if y = f(x), y' and $\frac{dy}{dx}$ are all notation for the derivative function. To evaluate a deriv in Leibniz notation : de la There is also Newton's fluxion /flyspeck notation y, f etc.

Leibniz notation dy comes from dy Ny dx Δx Skitching graphs of derivatives Y=VX 212

		L +	et his	5	u fi	ידטי גרעו	k 2 t	4	og n	et ;	he	ć	4 -	7	sk.	et	ch	• • •	the		dı	riv	ał	7i∨4	· · ·	of				
									•	1 (a	 \ ='	lin	•	g (e	z+h) -g	į(h')				= a	. ()	×)						
								. .	- Z F	er \	, , > (h-• 0,	96 96	1+h)	ا -g ((مر	=					ð		,						
											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 <mark>R</mark>		ر • -		- ig	مر آ	ga	fiva	spe	2									
								•					K			/														
								• •		) }			× /	X	<b>x</b>							7=	J'	×)						
						1					 		+ +	<b>°</b> //		•	•	•	•	· ·	· ·	•								
								ŀ		6		٩	.+h o	a is	ath not	4	: <i>[[</i>		<b></b> :	.1.0	2	•								
													ł				<u>~][</u> ~				<u>,                                    </u>		a -							
														<b>บ</b>																

Then If f(x) is differentiable at x=a, then f is continuous at a. See \$3.2 Thm 3.1 for an algebraic proof Want to have  $\lim_{x \to a} f(x) = f(a)$  given f'(a) exists. Well,  $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$  so if  $f(x) - f(a) \xrightarrow{x \to a} x - a$ × + × O thin the limit defining f'(a) does not exist  $\Re$ . Thus  $f(x) - f(a) \xrightarrow[x \to a]{} 0 \implies f(x) \xrightarrow[x \to a]{} f(a)$ .

Continuous => differentiable  $E_{x} \cdot f(x) = |x|$  is cts but not diff'( at x = 0•  $f(x) = x'^{\prime}$ diff" •  $f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \end{cases}$  $f'(0) = \lim_{x \to 0} \frac{x \sin(\frac{1}{x}) - 0}{x - 0} = \lim_{x \to 0} \sin(\frac{1}{x})$ 

Problem Find a, b in IR such that  $f(x) = \begin{cases} ax+b & \text{if } x < 3 \\ x^2 & \text{if } x > 3 \end{cases}$ is both continuous and differentiable at x = 3Hint Need lim ax+b=3 and  $\frac{dx^2}{dx}\Big|_{x=3} = \frac{d(ax+b)}{dx}\Big|_{x=3}$ 

Problema Suppose f, q are differentiable. Explain why (f+g)' = f'+g' and (af)' = a(f') for any constant a.