	24. ૉ	x .	20	
Review				
· Limits : • Derivatives :				
- from takles - definition				
- from graphs - tangent lines				
- algebraically - rate of change				
- laws - laws				
tor exam, only	7			
Exam: 50 min in-class power and line	erity			
I I FFI a gales ne	eded	,		
· 2-sided page of notes				
· 4 problems				
· · · · · · · · · · · · · · · · · · ·				

E.g.	We saw $\lim_{x \to 0} \frac{\sin x}{x} = 1$, so for x close to 0,
	$\frac{\sin x}{x} \approx 1 \iff \sin x \approx x$
	For instance, sin 0.003 & 0.003 0.002999995
Note Is y	$\sin x \approx x$ is a linear approximation of $\sin x$. $f = x$ the tangent line to $y = \sin x$ at $(0, \sin 0) = (0, 0)$?
Since	y = x passes through (0,0], just need to check if tan = $\frac{d}{dx} \sin x \Big _{x=0} = 1$.

Let $f(x) = \sin x$. Then $f'(o) = \lim_{h \to o} \frac{\sin(0+h) - \sin(0)}{h}$ $= \lim_{h \to 0} \frac{\sinh h}{h}$ That's what our limit was measuring = 1 all along! Question For f differentiable, de we always have $\lim_{h \to 0} \frac{f(x+h) - f(x)}{f'(x)h} = 1?$

Answer Only for f'(x) =0 Note More generally, $\lim_{x \to a} \frac{f(x)}{g(x)} = c \implies f(x) \approx cg(x)$ for × mar a as long as c = 0. linear approx's to y=fle) mar x=a is y - f(a) = f'(a)(x - a)or $y = f'(a) \cdot x - af'(a) + f(a)$

Find tangent lim to $Y = \sqrt{x + x^2}$ at $x = \frac{724}{4}$ A let $f(x) = \sqrt{x} + x^2 = x^{1/2} + x^2$ By linearity of diff'n and power rule, $f'(x) = \frac{1}{2}x^{-1/2} + 2x^{-1}$ $=\frac{1}{2}x^{-1/2}+2x$ Thus $f'(4) = \frac{1}{2} \cdot 4^{-1/2} + 2 \cdot 4 = \frac{1}{2\sqrt{24}} + 8 = \frac{1}{4} + 8$ $=\frac{33}{4}$

			Th	 	id r	J	en	1		V.	. C	ał	. /	Ľ ′	= 4	4	is	· ¦ ¦	h	us							
					• ر •	1 .		F.L.	4)		. 1,1 .		33 4	- (· / /	<u>ر</u>	- 4										
						, 1 ,	· - : (·	1	4	+4	12)).	. .	3	3-4	X		-3	33								
					• • •	Y		18	5 ').	. .		33 4	. ×		- 3	33											
									1	. 15	3	3	K	•		15											
									•			4															