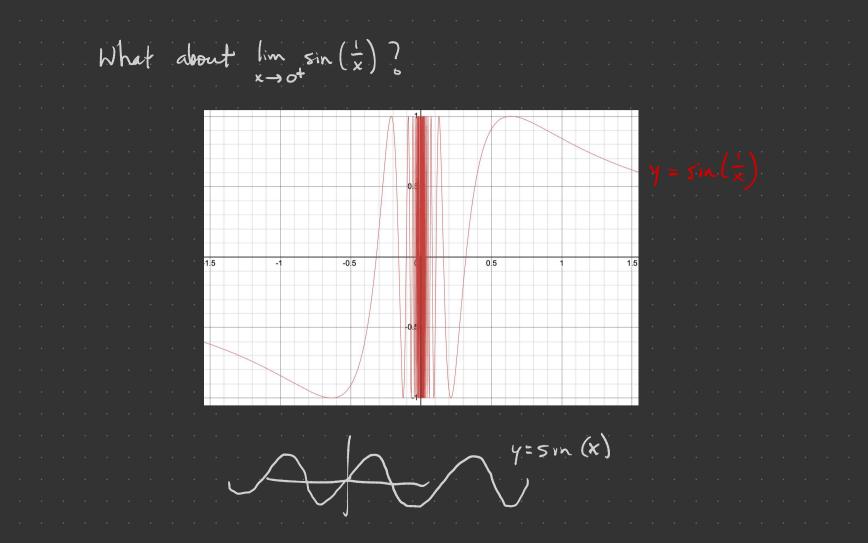
24. [x.9

5

Compute lim g(x) for a= 4 2 lim q(x) DNE 4 DNE 5 g(x) lim -2 4 2


Some functions only have a limit from one "side" $\lim_{x \to a^{+}} f(x)$ lim f(x) x-sat v x approaches × approaches a from the left a a sea a from the right a Problem What about left and (See book for definitions.) right variants of limits above? Problem (a) Graph y=x² (b) Use the following table to compute slopes of lines through (1,1) and (x, x^2)

						 		x ² -1		slop	e of lin	· · · · ·
						· · · ~ · · ·	· · · · · ·	× -		throw	gh (×.	, y »)
											(x,,y,)	
						. .	. I.21	2.1			v	
							1.0201	2.01		y	-yo :	rise
						 	1.002001	2.001			, - X ₀	run
						0.999	0.998001	1.999			· · · · · ·	(x, y,)
						0.99	0.98 01	1.99				3,-30
							0.81 · ·					(x,,y,) y,-y.
											· · · · · · · · · · · · · · · · · · ·	
				(()	What	is the liv	nit of th	n secant			
						Slone	s as x -	-> ?	lim	.X*	= 2	
						· · · · ·	set m(x)	= x - 1	×-) thin	X-1 lim	m (x) =	- 2
								· · · · · · · · · · · · · · · · · · ·				

You just computed your first derivative! x²-1 lim X-1 X->I $\lim_{x \to \infty} \frac{f(x) - f(a)}{2}$ (x+1)(x-1)lim ۲). X-> (x+1)lim 5 instantaneous Slope f change rate of

Discussion What is the relationship between $\lim_{x \to a} f(x) \quad \lim_{x \to a^+} f(x) \quad \text{and} \quad \lim_{x \to a^-} f(x) ?$ In particular, what does $\lim_{x \to a} f(x) = L$ tell you about $\lim_{x \to a^+} f(x), \lim_{x \to a^-} f(x) \stackrel{?}{\leftarrow} \text{ What does } \lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$ tell you about $\lim_{x \to a} f(x) ?$ both equal L ! thin lim fle does not exist (im f(x), then lim f(x) = L x→a (In fact, équivalent ;) Also, if $\lim_{x \to a^+} F(x)$

		Th		۔ جزد	<u>jn</u>		fu	Inz	:fi	DN		፞		Sig	ž	1	2 · 	0		→ [2	g	ئ ٧	en	·	by	7			
		510	in ((x)	(l .	. <u>.</u> .	r X		fe	*	X	≠ ℃) (
		. ()	د م)	Ġ	r a	ph	•	ઝા	gn	.(x	;)									•										
) 	لط ا	C C	on	per	tu	ι. 	;v × –	~ ~ ~	.+	sig	n ()	<)		lim ->	0	sig	pn ((x)										
		• (، ، د) ا	F F	مكرة	. 0	C	in	R) • _		Wh	N	L.	de	x 2	۶g	,n ((K	- a) .)	fa	į	ł	•	ha	ve	• .		
				a				_																						

Infinite limite, limits at infinity Consider $f(x) = \frac{1}{x^2}$ Say lim $f(x) = +\infty$ ble as x gets close to O (from either x $\rightarrow 0$ soda), f(x) gets arbitrarily large. What about lim +? DNE

		<	Sa.		· li	M		· _	.	1	О		6	RC	a	入自	2.		•	Y	Ga	₽<	•	 bit	r	י גרו		1	la	۲٦	· e	·		
					×	$\stackrel{\cdot}{\rightarrow}$	æ	` >	K											~	Y		•	 			Ő	-		8				
			t.		•		•						;			•		_																
			÷ ×	g.	ets	5 1	clo	se	f .	ar	L.	. C	<u>رم</u>	sr	V .	.h) (O_{1}																