24. 12 . 13 Continuity A function f is continuous at x= a when $\lim_{x \to a} f(x) = f(a)$ A function f is continuous on an open interval when it is continuous at every point in that interval. e dis cts E.g. Polynomial functions are continuous on R. · Rational functions are continuous on their domains, . Triz functions are continuous on their domains.

· Composites if cts functions are cts. E.g. A fly travels cast at a constant speed until it imparts a westbound freight train: displacement ____ vulocity

allows Suants </>
</>
</>
</>
</ y=f(x) x<a (x,f(x)). lim allows h<0 h→0 (a,f()) ah x = ath > diffurence X -0 X-0 slipe of X-a sezant quotients -f(a) $= f(a+h)^2$ Tangints $x \rightarrow a \quad (or \quad h \rightarrow 0)$ $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ f(a+h).-

E.q. Let's find the tangent line to $f(x) = x^2$ at x = 3: The tangent line passes through $M_{tan} = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$ (3,9) with slope 6, so $= \lim_{x \to 3} \frac{x^2 - q}{x - 3}$ y - 9 = 6(x - 3) $= \lim_{x \to 3} (x - 3)(x + 3)$ (=) y = 6x - 9 $= \lim_{x \to 3} (x+3)$ (3,9) = (0 . . . y=6x-9

							J	· [·									/								
														<u>`</u>	/	Sle	n.	ŝ							
													/				ſ.								
											_	· ·													
											. ((×,	,70	\mathbf{N}											
						/																			
					<u> </u>			┝┼─┤		•		•	•••	•	•	•	- ×								
								· _																	
								$ \cdot $																	
								· ' -																	
							•		1 .			•				_		, .							
					P	Di	nt	- 5	lop	بع			ne		pag	>	عع	j N							
																		· .							
								·	- 20		Ļ	· 1/	na · 1	(x	-	X	.) .								
							.0	F.	2	ο.	. –	· •				Ϋ́́Λ	ノ								
			(-		10		1				14.			- /								
			()	<.,	, Y)	Ľ,	(3	,1	J.		Ŵ	∧ ⊃	m	ta	~	- (0							
					U											×.									

Note Also have $m_{\text{fan}} = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$ $= \lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$ $= \lim_{h \to 0} \frac{9+6h+h^2-9}{h} = \lim_{h \to 0} \frac{h(6+h)}{h}$ $= \lim_{h \to 0} ((b+h))$ = 6 as before V

Problem Find myan at x=4 for flx)=Vx via on of limit defins defins $f_{x} = \sqrt{24}$ $x - 4 = (\sqrt{2} - 2)$. $f_{x} = \sqrt{24}$ $\sqrt{2} = \sqrt{24}$ $f_{x} = \sqrt{24}$ $\sqrt{2} = \sqrt{24}$ $f_{x} = \sqrt{24}$ $\sqrt{2} = \sqrt{2}$ $\sqrt{2} =$ defins $= \lim_{x \to 4} \frac{1}{x-4} + \frac{1}{x-4} + \frac{1}{x+2}$ $= \lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}$

Defn a. T	Let flxi In duriva	tive of	func. ? flx	tion) at	dof: t a	nd	, on 15	L Gy	n o	pen	- 11	ter	vzl		nte	ŧin	.in
	f'(a)	$= \lim_{x \to a}$	flx) - , x-	flaj a	· · · · · ·	 -	\rightarrow	f ,	-la-	+h) 		-[a	<u>)</u>			
provi	ded the	limit each	ӄ								· ·						
Ξ,	f'(a) =	m _{tan}	· · · · · · · · · · · · · · · · · · ·														

Rate of change change in f. $M_{sec} = \frac{f(x) - f(a)}{x - a}$ $\frac{\Delta f}{\Delta x} = \frac{\alpha v u r a g e}{\sigma f} r a t e}{\sigma f} change over [a, x]}$ change in .x. =. h. So $m_{tan} = f'(a) = instantaneous rate of change$ If f(t) is displacement or position at time t, than f'(t) is velocity