	24. 🕮 - 6
Groals	· Define functions
	· Define limits
	· Explore limits
Defn	A function f consists of _ contains image
	· a set of inputs (domain) ={values obtained
	a set of (potential) outputs (codomain)
	a set of (potential) outputs (codomain)
	· a set of (potential) outputs (codomain) · an assignment to each input x exactly one
	a set of (potential) outputs (codomain)

E.g. $f(x) = 3x^2$ is a function $\mathbb{R} \xrightarrow{f} \mathbb{R}$ domain codomain $g(x) = \sqrt{x-1}$ is a function $[1, \infty) \longrightarrow \mathbb{R}$ $\left\{ x \in \mathbb{R} \right\} \mid x \in \mathbb{R}$ $h(x) = \frac{x^2 - 1}{1}$ is a function $\mathbb{R} \cdot \{1\} \longrightarrow \mathbb{R}$ = (x+1)(x-1) = x+1 {x in R [x ≠ t Question What are the domain and image of $f(x) = \sqrt{4-2x} + 5^{2}$? image $(f) = \{f(x) \mid x \text{ in domain} \}$ 0 -35 -30 -25 -20

Limits answer the question "as x approaches (but does not equal!) a, what happens to f(x)? The limit of f(x) as xapproaches a is 1: E_{g} $\gamma = f(x)$ a $\lim_{x \to a} f(x) = 1$ · f a function defined on an open interval containing a, with the possible exception of a itself Defn - Say $\lim_{x \to a} f(x) = L$ when x gets closer to a but #a implies f(x) gets closer to L.

More formally, for any target E>0, we can find a bound 5>0such that f(x) is within E of L for all x with 5 of a (but xta). L- o E.g. Consider $f(x) = \frac{x-1}{x}$. Determine $\lim_{x \to \infty} f(x)$ x - 1from this table $f(x) = \frac{\left(\frac{1}{x} - 1\right)}{x - 1}$ x0.9-1.11111111111110.99-1.01010101010.999-1.0010010011.001-0.9990009990011.01-0.9900990099011.1 -0.909090909091

Problem Simplify $\frac{x-1}{x-1}$ algebraically to justify your answer Problem Compute lim g(x) for a = -4, -1, 2, 4