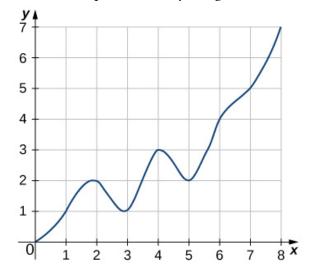
MATH 111: CALCULUS **HOMEWORK DUE WEDNESDAY WEEK 9**

Problem 1. Let L_n denote the left-endpoint Riemann sum using n subintervals and let R_n denote the corresponding right-endpoint Riemann sum. Compute the indicated left and right Riemann sums for the given functions on the indicated interval.

- (a) R_4 for $g(x) = \cos(\pi x)$ on [0, 1](b) L_8 for $x^2 2x + 1$ on [0, 2]

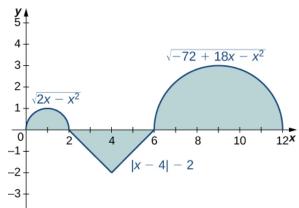
Problem 2. Estimate the area under the depicted curve by using the left Riemann sum L_8 .



Problem 3. Suppose $f: [a, b] \to \mathbb{R}$ is an integrable function.

- (a) Explain why R_n L_n = (f(b) f(a)) ⋅ ^{b-a}/_n.
 (b) Suppose further that f is increasing on [a, b]. Explain why, in this case, the error betweeen either L_n or R_n and ∫_a^b f(x) dx is at most (f(b) f(a)) ⋅ ^{b-a}/_n.

Problem 4. Use the information presented in the below graph of y = h(x) to compute $\int_0^{12} h(x) dx$ geometrically.



Problem 5. Suppose that

$$A = \int_0^{2\pi} \sin^2 t \, dt \qquad \text{and} \qquad B = \int_0^{2\pi} \cos^2 t \, dt$$

Show that $A + B = 2\pi$ and A = B.

Problem 6. Suppose $f: [0,2] \to \mathbb{R}$ is given by $f(x) = \sqrt{4-x^2}$.

(a) Use a geometric argument to compute the average value f_{ave} of f over [0, 2].

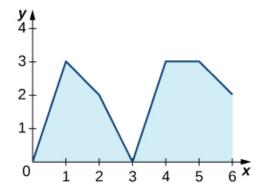
(b) Find a point c in [0, 2] such that $f(c) = f_{ave}$.

Problem 7. Use FTC1 to compute the following integrals:

(a)
$$\frac{d}{dx} \int_{1}^{x} e^{-t^{2}} dt$$

(b) $\frac{d}{dx} \int_{1}^{\sqrt{x}} \frac{t^{2}}{1+t^{4}} dt$

Problem 8. The graph of $y = \int_0^x f(t) dt$, where f is a piecewise constant function, is shown here.



- (a) Over what intervals is f positive? negative? Over which intervals, if any, is f equal to 0?
- (b) What are the maximum and minimum values of f?
- (c) What is the average value of f?